Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study
نویسندگان
چکیده مقاله:
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total frames of a video. So far, both 2D and 3D convolutional neural networks have been used to manipulate the temporal dynamics of the video frames. 3D CNNs can extract the changes in the consecutive frames and tend to be more suitable for the video classification task, however, they usually need more time. On the other hand, by using techniques like tiling it is possible to aggregate all the frames in a single matrix and preserve the temporal and spatial features. This way, using 2D CNNs, which are inherently simpler than 3D CNNs can be used to classify the video instances. In this paper, we compared the application of 2D and 3D CNNs for representing temporal features and classifying hand gesture sequences. Additionally, providing a two-stage two-stream architecture, we efficiently combined color and depth modalities and 2D and 3D CNN predictions. The effect of different types of augmentation techniques is also investigated. Our results confirm that appropriate usage of 2D CNNs outperforms a 3D CNN implementation in this task.
منابع مشابه
EMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملHand Pose Estimation with Convolutional Networks using RGB-D Data
xi Εκτεταμένη Περίληψη xiii
متن کاملRGB-D Object Recognition Using Deep Convolutional Neural Networks
We address the problem of object recognition from RGB-D images using deep convolutional neural networks (CNNs). We advocate the use of 3D CNNs to fully exploit the 3D spatial information in depth images as well as the use of pretrained 2D CNNs to learn features from RGB-D images. There exists currently no large scale dataset available comprising depth information as compared to those for RGB da...
متن کاملStatic hand gesture recognition using neural networks
This paper presents a novel technique for hand gesture recognition through human–computer interaction based on shape analysis. The main objective of this effort is to explore the utility of a neural network-based approach to the recognition of the hand gestures. A unique multi-layer perception of neural network is built for classification by using backpropagation learning algorithm. The goal of...
متن کاملDoppler-Radar Based Hand Gesture Recognition System Using Convolutional Neural Networks
Hand gesture recognition has long been a study topic in the field of Human Computer Interaction. Traditional camera-based hand gesture recognition systems can not work properly under dark circumstances. In this paper, a DopplerRadar based hand gesture recognition system using convolutional neural networks is proposed. A cost-effective Doppler radar sensor with dual receiving channels at 5.8GHz ...
متن کاملComparative Study of Hand Gesture Recognition System
Human imitation for his surrounding environment makes him interfere in every details of this great environment, hear impaired people are gesturing with each other for delivering a specific message, this method of communication also attracts human imitation attention to cast it on human-computer interaction. The faculty of vision based gesture recognition to be a natural, powerful, and friendly ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 8 شماره 2
صفحات 177- 188
تاریخ انتشار 2020-04-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023